2012 Vol. 14, No. 19 4990–4993

Enantioselective Cyclopropanation of Indoles: Construction of All-Carbon Quaternary Stereocenters

Gülsüm Özüduru, Thea Schubach, and Mike M. K. Boysen*

Institute of Organic Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, D-30167 Hannover, Germany

mike.boysen@oci.uni-hannover.de

Received July 9, 2012

ABSTRACT

The first enantioselective copper-catalyzed cyclopropanation of *N*-acyl indoles is described. Using carbohydrate-based bis(oxazoline) ligands (*gluco*Box), the products were obtained in up to 72% ee. Cyclopropanation of *N*-Boc 3-methyl indole yielded a product with an all-carbon quaternary stereocenter, which is a valuable building block for the synthesis of indole alkaloids: Deprotection and rearrangement gave a tricyclic hemiaminal ester in 96% ee, which was subsequently employed as a key intermediate for the synthesis of (—)-desoxyeseroline.

Chiral cyclopropanes are important motifs in natural products and pharmaceuticals, and cyclopropyl units with donor and acceptor substituents¹ can be transformed into valuable synthetic intermediates via ring opening or ring expansion. Unsurprisingly considerable effort has gone into the development of stereoselective routes toward these compounds;² one convenient approach is the coppercatalyzed cyclopropanation of alkenes using diazo compounds. Chiral bis(oxazoline) ligands (Box),³ such as (S)-1 (Figure 1), are powerful tools for this process.⁴ Carbohydrates, which are available in large amounts and diverse architectures, are interesting but comparatively rarely used

starting materials for the design of chiral ligands.⁵ In the course of our work we have introduced Ac *gluco*Box (2) based on D-glucosamine (Figure 1), which gave 82% ee in the cyclopropanation of styrene with ethyl diazoacetate.⁶ To optimize the pyranosidic scaffold for this reaction, ligand family 3-O-R¹ *gluco*Box (3a–g) was designed.⁷ The asymmetric induction of ligands 3a–g was strongly dependent on the steric demand and type of the 3-O residues with small acyl-based groups giving the best results (up to 95% ee with 3g).

^{(1) (}a) Yu, M.; Pagenkopf, B. L. *Tetrahedron* **2005**, *61*, 321. (b) Reissig, H.; Zimmer, R. *Chem. Rev.* **2003**, *103*, 1151. (b) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. *Chem. Rev.* **1989**, *89*, 165.

⁽²⁾ Reviews: (a) Pellissier, H. *Tetrahedron* **2008**, *64*, 7041. (b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* **2003**, *103*, 977. (c) Doyle, M. P.; Forbes, D. C. *Chem. Rev.* **1998**, *98*, 911.

⁽³⁾ Reviews: (a) Desimoni, G.; Faita, G.; Jørgensen, K. A. *Chem. Rev.* **2006**, *106*, 3561. (b) McManus, H. A.; Guiry, P. J. *Chem. Rev.* **2004**, *104*, 4151

⁽⁴⁾ Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726.

⁽⁵⁾ Reviews: (a) Lehnert, T.; Özüduru, G.; Grugel, H.; Albrecht, F.; Telligmann, S. M.; Boysen, M. M. K. Synthesis 2011, 2685. (b) Woodward, S.; Diéguez, M.; Pàmies, O. Coord. Chem. Rev. 2010, 254, 2007. (c) Benessere, V.; Del Litto, R.; De Roma, A.; Ruffo, F. Coord. Chem. Rev. 2010, 254, 390. (d) Boysen, M. M. K. Chem.—Eur. J. 2007, 13, 8648. (e) Diéguez, M.; Pàmies, O.; Claver, C. Chem. Rev. 2004, 104, 3189. (f) Hale, K. J. In Second Supplement to the Second Edition of Rodd's Chemistry of Carbon Compounds, Vol. 1E/F/G; Sainsbury, M., Ed.; Elsevier: Amsterdam, 1993; Chapter 23b, p 273.

⁽⁶⁾ Irmak, M.; Groschner, A.; Boysen, M. M. K. Chem. Commun. 2007, 177

^{(7) (}a) Minuth, T.; Boysen, M. M. K. Synlett **2008**, 1483. (b) Minuth, T.; Irmak, M.; Groschner, A.; Lehnert, T.; Boysen, M. M. K. Eur. J. Org. Chem. **2009**, 997. (c) Minuth, T.; Boysen, M. M. K. Beilstein J. Org. Chem. 2010, 6, DOI: 10.3762/bjoc.6.23

Figure 1. Conventional Box ligand (S)-1, carboydrate-based ligands Ac glucoBox (2) and 3-O-R¹ glucoBox (3a-g).

Thus optimized ligand 3-O-formyl glucoBox (3g) was obtained, which was suitable even for challenging aliphatic olefins: with 1-nonene, 90% ee was obtained, and the transproduct was used in the stereoselective synthesis of the natural product grenadamide. Recently ligands 2 and 3 were employed by Reddy in copper(II)-catalyzed Henry reactions and Friedel—Crafts alkylations. 10

In contrast to other electron-rich heterocycles such as furans, benzofurans, and pyrrols, indoles have rarely been employed in cyclopropanation reactions.¹¹ The first examples with achiral copper catalysts were reported by Welstead, ¹² Wenkert, ¹³ and Lehner, ¹⁴ followed by later reports by Reiser, ¹⁵ Yan, ¹⁶ and Wee. ¹⁷ Recently, cyclopropanation products of 3-substituted indoles were used as key intermediates in syntheses of complex indole alkaloids ¹⁸ containing quaternary stereocenters: Qin used intramolecular reactions of tryptamine and tryptophol derivatives for racemic syntheses of communesin ¹⁹ and minfiensine. ²⁰ Diastereoselective examples were reported by Spino and again by Qin, who performed

Table 1. Cyclopropanation of N-Acyl Indoles 4a,ba

	ligand				6			
entry		3- <i>O</i> -R ¹	$\begin{array}{c} temp \\ [^{\circ}C] \end{array}$	\mathbb{R}^2	yield [%]	exo/endo ^d	ee (<i>exo</i>)	
1	3g	formyl	rt	Ac	75^b	84:16	34^e	
2	3a	Ac	\mathbf{rt}	Ac	71^b	82:18	34^e	
3	3g	formyl	\mathbf{rt}	\mathbf{Boc}	$(67)^{c}$	nd	45^f	
4	3a	Ac	\mathbf{rt}	\mathbf{Boc}	$(70)^{c}$	nd	55^{f}	
5	3b	Bz	\mathbf{rt}	\mathbf{Boc}	$(54)^{c}$	nd	45^f	
6	3c	Piv	\mathbf{rt}	\mathbf{Boc}	$(70)^{c}$	nd	38^f	
7	2	_	\mathbf{rt}	\mathbf{Boc}	$(68)^{c}$	nd	rac^f	
8	3a	Ac	10	Ac	75^b	87:13	53^e	
9	3a	Ac	0	Ac	76^b	92:8	51^e	
10	3a	Ac	-5	Ac	56^b	>99:1	61^{e}	
11	3a	Ac	-10	Ac	9^b	>99:1	45^e	
12	3a	Ac	10	\mathbf{Boc}	$(76)^{c}$	nd	69^f	
13	3a	Ac	0	Boc	$(57)^{c}$	nd	72^{f}	
14	3a	Ac	-10	Boc	$(62)^{c}$	nd	55^f	

^aLigand (3.3 mol %), CuOTf·0.5C₆H₆ (3 mol %), 4 (1 equiv), 5 (2.5 equiv). ^bCombined yield of 6 after chromatography. ^cYield for of *exo*-6b; product contains 0.06–0.4 equiv of diethyl fumarate; yield calculated from ¹H NMR ratio of *exo*-6b to fumarate. ^dDetermined after separation of the diastereomers. ^eDetermined by GC. ^fDetermined by HPLC.

cyclopropanations on chiral indole derivatives for the syntheses of aspidofractinine²¹ and ardeemin.²² To the best of our knowledge, no enantioselective variant of this transformation has been described so far. Now we report the first enantioselective cyclopropanation of *N*-acyl indoles using copper(I) triflate and carbohydrate ligands 2 and 3.

At the outset, we tested the reaction of *N*-acetyl indole (4a) with ethyl diazoacetate (5) at rt in the presence of CuOTf and ligand 3g or 3a (Table 1, entries 1 and 2), which gave *exo*-6a and *endo*-6a (80:20) in 70–75% yield and 34% ee for *exo*-6a. Products 6b from *N*-Boc indole (4b) were isolated together with fumarate and maleate esters, which are formed by decomposition of ethyl diazoacetate (5). While *exo*-6b and *endo*-6b were separable by chromatography, the byproduct could not be removed, which prevented the exact determination of yield and the *exo/endo* ratio for reactions with substrate 4b. The yields given in Table 1 refer to *exo*-6b and were caclulated from the ¹H NMR ratio of *exo*-6b and diethyl fumarate. HPLC analysis permitted the determination of the ee for *exo*-6b: ligand 3g yielded 45% ee, while 3a with a sterically more

Org. Lett., Vol. 14, No. 19, 2012

⁽⁸⁾ Minuth, T.; Boysen, M. M. K. Synthesis 2010, 2799.

⁽⁹⁾ Reddy, B. V. S.; George, J. *Tetrahedron: Asymmetry* **2011**, *22*, 1169.

⁽¹⁰⁾ George, J.; Reddy, B. V. S. Org. Biomol. Chem. 2012, 10, 4731.

⁽¹¹⁾ Davis, H. M. L.; Hedley, S. J. Chem. Soc. Rev. 2007, 36, 1109.

⁽¹²⁾ Welstead, W. J., Jr.; Stauffer, H. F., Jr.; Sancilio, L. F. J. Med. Chem. 1974, 17, 544.

⁽¹³⁾ Wenkert, E.; Alonso, M. E.; Gottlieb, H. E.; Sanchez, E. L. *J. Org. Chem.* **1977**, *42*, 3945.

⁽¹⁴⁾ Keller, H.; Langer, E.; Lehner, H. Monatsh. Chem. 1977, 108, 123

⁽¹⁵⁾ Gnad, F.; Poleschak, M.; Reiser, O. Tetrahedron Lett. 2004, 45,

⁽¹⁶⁾ Zhang, X.-J.; Liu, S.-P.; Yan, M. Chin. J. Chem. **2008**, 26, 716.

⁽¹⁷⁾ Zhang, B.; Wee, A. G. H. *Chem. Commun.* **2008**, 4837.

⁽¹⁸⁾ Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res. **2011**, 44, 447.

^{(19) (}a) Yang, J.; Song, H.; Wang, J.; Qin, Y. Org. Lett. **2006**, *8*, 2187. (b) Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. **2007**, 129, 13794.

⁽²⁰⁾ Shen, L.; Zhang, M.; Wu, Y.; Qin, Y. Angew. Chem., Int. Ed. 2008, 47, 3618.

⁽²¹⁾ Gagnon, D.; Spino, C. J. Org. Chem. 2009, 74, 6035.

^{(22) (}a) Song, H.; Yang, J.; Qin, Y. Org. Lett. **2006**, 8, 6011. (b) He, B.; Song, H.; Du, Y.; Qin, Y. J. Org. Chem. **2009**, 74, 298.

demanding 3-O-Ac group produced *exo-6b* in 55% ee. Ligands **3b,c** with larger Bz and Piv groups led to decreased ee (entries 5 and 6). Thus the steric demand of the 3-O substituents in ligands **3** has once again direct influence on stereoselectivity. Te,8 Ligand **2**, lacking the 4,6-O-benzylidene acetal units of **3a**, led to a complete loss of stereoselectivity (entry 7). This striking difference in the asymmetric induction of ligands **3a** and **2** may be explained by the distinctly different pyranoside conformations these ligands adopt due to the presence or absence of the benzylidene acetal units. Tb,c

To improve the ee for substrates $\bf 4a$ and $\bf 4b$, reactions with ligand $\bf 3a$ were performed at lower temperature. For N-acetyl indole ($\bf 4a$), a decrease from rt to -5 °C led to an improved exo/endo ratio and ee (entries 8-10): at -5 °C $exo-\bf 6a$ was obtained in 61% ee and almost diastereomerically pure form. Lower temperatures resulted in a severely reduced yield and stereoselectivity (entry 11). Cyclopropanation of N-Boc indole ($\bf 4b$) at lower temperatures also improved the ee: while due to fumarate and maleate byproduct only a calculated yield was determined, HPLC analysis of $exo-\bf 6b$ showed an increase of the enantioselectivity to 72% ee, when the temperature was lowered from to 0 °C (entries 12-14). However at -10 °C the stereoselectivity dropped to 55% ee.

After these promising initial results we decided to try the enantioselective cyclopropanation of *N*-acetyl 3-methyl indole (7a) with ligand 3a (Table 2). This reaction is attractive as the diastereomeric products *exo-8a* and *endo-8a* contain an all-carbon quaternary stereocenter, which are challenging to construct in an asymmetric manner.²³ These cyclopropanes can be further elaborated into tricyclic hemiaminal ester 13 by cyclopropane opening

Table 2. Cyclopropanation of *N*-Acetyl 3-Methyl Indole (7a)^a

		8a			
entry	temp [°C]	yield [%] ^b	$\it exo/endo^d$	ee (<i>exo</i>) [%] ^e	
1	rt	66	65:35	48	
2	10	52	67:33	56	
3	0	40^c	71:29	52	
4	-10	29^c	>99:1	70	
5	-20	17^c	>99:1	71	

^a Ligand (3.3 mol %), CuOTf·0.5C₆H₆ (3 mol %), **7a** (1 equiv), **5** (2.5 equiv). ^b Combined yield of **8a** after chromatography. ^c Incomplete conversion, reisolation **7a**. ^d Determined after separation of diastereomers. ^e Determined by GC.

after removal of the *N*-acetates and the ethyl esters, as was demonstrated by Wenkert for a related racemic example. ¹³

At rt and 10 °C the reaction of **7a** produced *exo-***8a** and *endo-***8a** in modest diastereoselectivity, moderate yield, and 48% ee and 56% ee respectively (entries 1 and 2). A further decrease in temperature led to strikingly improved *exo/endo* ratios, albeit at the expense of the yield, while up to 70% ee was observed.

In the study from Table 1, *N*-Boc protected indole **4b** had led to a higher ee than its acetylated counterpart **4a**, so we next examined the reaction of *N*-Boc 3-methyl indole (**7b**). Unfortunately, the corresponding cyclopropanes **8b** were again obtained together with fumarate and malonate impurities that were impossible to remove. Therefore the raw cyclopropanation product *exo*-**8b** was directly transformed into hemiaminal ester **13** (Scheme 1): Acidic removal of the Boc group yielded imine **11** via ring opening of donor—acceptor cyclopropane intermediate **9**, and cleavage of the ethyl ester²⁴ in **11** gave acid **12**, which spontaneously cyclized to yield hemiaminal ester **13**.

Scheme 1. Transformation of exo-8b into Hemiaminal Ester 13

$$\begin{array}{c} \text{Me} \quad \text{CO}_2\text{Et} \\ \text{Proposition} \quad \text{CO}_2\text{Et} \\ \text{New CO}_2\text{Et} \\ \text{New CO$$

Following this strategy, we studied the enantioselective synthesis of 13 (Table 3). Cyclopropanation of 7b at rt using 3-O-Ac glucoBox (3a) followed by N-deprotection gave imine 11 in modest yield. To our delight, saponification of 11 gave (-)-13 in 87% ee and 63% yield (entry 1). For comparison, 3-O-formyl ligand 3g and conventional Box ligand (S)-1 were also tested. With these 13 was obtained in 82% ee. While 3g and 3a gave the (-)-enantiomer of 13, ligand (S)-1 led to (+)-13 (entries 2 and 3). The formation of (-)- and (+)-13 with ligands 3a,g

4992 Org. Lett., Vol. 14, No. 19, 2012

⁽²³⁾ Reviews: (a) Das, J. P.; Marek, I. Chem. Commun. 2011, 4593. (b) Steven, A.; Overman, L. E. Angew. Chem., Int. Ed. 2007, 46, 5488. (c) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2007, 5969. (d) Trost, B. M.; Jiang, C. Synthesis 2006, 369. (e) Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005, 347, 1473. (f) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105. (g) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.

⁽²⁴⁾ Ishibashi, H.; Mita, N.; Matsuba, N.; Kubo, T.; Nakanishi, M.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1 1992, 2821.

Table 3. Asymmetric Synthesis of Hemiaminal Ester **13** via Enantioselective Cyclopropanation of *N*-Boc Indole **7b**^a

	ligand			11	13	
entry		3- <i>O</i> -R ¹	$_{[^{\circ}\mathrm{C}]}^{\mathrm{temp}}$	yield $[\%]^b$	yield [%]	ee [%] ^c
1	3a	Ac	rt	17	63	87 (-)
2	3g	formyl	rt	14	78	82(-)
3	(S)-1	_	rt	20	99	82(+)
4	3a	Ac	10	36	75	94(-)
5	3a	Ac	0	61	71	96 (–)
6	3a	Ac	-10	36	71	97 (-)
7	3a	Ac	-20	11	90	92(-)

^a Ligand (3.3 mol %), CuOTf·0.5C₆H₆ (3 mol %), **7b** (1 equiv), **5** (2.5 equiv). ^b Isolated yield over two steps from **7b**. ^c Determined by GC.

and (S)-1 respectively was expected, as our carbohydrate ligands and (S)-1 produced cyclopropanes from styrene in opposite configurations as well. Again, the ee of 13 was substantially increased, when the temperature was reduced from rt to -10 °C (entries 4–6) while lower temperatures were detrimental to yield and ee (entry 7). Cyclopropanation at 0 °C in the presence of 3a gave 11 in 61% yield from indole 7b, and hemiaminal ester 13 was obtained in 71% yield and excellent 96% ee after deprotection of 11 (entry 5).

Scheme 2. Synthesis of (-)-Desoxyeseroline (14) from 13

The high stereoselectivity obtained for **13** makes the reaction sequence described above a highly useful approach toward indole alkaloids comprising a pyrrolo-indoline core, i.e. desoxyeseroline, ²⁵ esermethole, ²⁶ and physostigmine: ²⁶ following a route previously described by Ikeda²⁷ for a racemic synthesis of esermethole, (–)-desoxyeseroline (**14**) was obtained in good overall yield from hemiaminal ester **13** via *N*-methylation²⁸ and aminolysis followed by hydride reduction²⁹ (Scheme 2). All spectroscopical data of **14** were in good agreement with the reported ones, ²⁵ the optical purity of **14** (92% ee) was determined by ¹H NMR using the dirhodium method. ³⁰

In summary we have reported the first enantioselective copper-catalyzed cyclopropanation of indoles. *N*-Boc indole **4b** gave *exo*-**6b** in up to 72% ee, while 3-substituted *N*-Boc indole **7b** provided **13** via *exo*-**8b** in excellent 96% ee. Finally, the high utility of this process for indol alkaloid synthesis was demonstrated by the stereoselective synthesis of (–)-desoxyeseroline (**14**) from hemiaminal ester **13**. Studies on further applications are currently underway in our laboratories.

Acknowledgment. This work was generously funded by the German Research Foundation (DFG) (Grant BO 1938/2-2) and the Volkswagen Foundation. M.M.K.B. thanks the DFG for a Heisenberg Stipend (Grant BO 1938/4-1). The authors thank Dr. Tanja Gaich and Prof. Dr. Helmut Duddeck (both from the Institute of Organic Chemistry, Leibniz University of Hannover, Germany) for helpful discussions.

Supporting Information Available. Experimental details, full characterization of all products, data for the determination of all enantiomeric excesses. This material is available free of charge via the Internet at http://pubs.acs.org.

(30) Duddeck, H. Chem. Rec. 2005, 5, 396.

Org. Lett., Vol. 14, No. 19, 2012

⁽²⁵⁾ Stereoselective syntheses of desoxyeseroline: (a) Kawahara, M.; Nishida, A.; Nakagawa, M. *Org. Lett.* **2000**, *2*, 675. (b) Espejo, V. R.; Li, X.-B.; Rainier, J. D. *J. Am. Chem. Soc.* **2010**, *132*, 8282. (c) Lim, H. J.; RajanBabu, T. V. *Org. Lett.* **2011**, *13*, 6596.

⁽²⁶⁾ Selected syntheses of esermethole and physostigmine. Diastereomeric examples: (a) Takano, S.; Goto, E.; Hirama, M.; Ogasawara, K. Chem. Pharm. Bull. 1982, 30, 2641. (b) Tanaka, K.; Taniguchi, T.; Ogasawara, K. Org. Lett. 2000, 2, 2757. (c) Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043. Enantioselective examples: (d) Lee, T. B. K.; Wong, G. S. K. J. Org. Chem. 1991, 56, 872. (e) Ashimori, A.; Matsuura, T.; Overman, L. E.; Poon, D. E. J. Org. Chem. 1993, 58, 6949. (f) Matsuura, T.; Overman, L. E.; Poon, D. E. J. Am. Chem. Soc. 1998, 120, 6500. (h) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590. (i) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314. (j) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874. (k) Bui, T.; Seyd, S.; Barbas, C. F., III. J. Am. Chem. Soc. 2009, 131, 8785.

⁽²⁷⁾ Ikeda, M.; Matsugashita, S.; Tamura, Y. *J. Chem. Soc. Perkin Trans. 1* **1977**, 1770.

⁽²⁸⁾ Morales-Ríos, M. S.; Santos-Sánchez, N. F.; Joseph-Nathan, P. J. Nat. Prod. **2002**, *65*, 136.

⁽²⁹⁾ Morales-Ríos, M. S.; Suárez-Castillo, O. R.; Trujillo-Serrato, J. J.; Joseph-Nathan, P. *J. Org. Chem.* **2001**, *66*, 1186.

The authors declare no competing financial interest.